Competitive azomethine ylide cycloaddition and carbonyl-ene reaction in the treatment of 4-(alk-2-enyl)amino-2-formylpyr-2(2H)-ones with sarcosine ethyl ester ${ }^{\dagger}$

Michihko Noguchi*, Ryosuke Akao, Hideyasu Kawamoto, and Yoshiaki Kuroki
Department of Applied Chemistry, Faculty of Engineering, Yamaguchi University, Tokiwasai, Ube 755-8611, Japan

The thermal reaction of 4-(alk-2-enyl)amino-2-formyl-2)2H)-pyrones 4 with sarcosine ethyl ester (2) gave two isomeric pyrrol $[3,4-c]$ pyrano $[4,3-d]$ pyridines 5 and 6, arising from the endo-cycloaddition of the resulting S- and W - shaped azomethine ylides, and [1,3]oxazines 8 via the carbonyl-ene reaction of pyrones 4 depending on the reaction conditions.

In a previous paper, ${ }^{1}$ we reported that the reaction of 4-(alk-2-enyl)benzylamino-3-formylchromen- $2(2 \mathrm{H})$-ones $\mathbf{1}$ with sarcosine ethyl ester (2) in benzene at reflux gave azomethine ylide intermediates, which underwent an intramolecular cycloaddition leading to chromeno[4,3-b]-pyrrolo-[2,3- d] pyridin- $11(11 H)$-ones as single isomers via an endoapproach of the S-shaped azomethine ylides. More recently, ${ }^{2}$ we also reported that the reaction of 2-(alk-2-enyl)benzyl-amino-3-formylpyrido[1,2-a]pyrimidin-4(4H)-ones 3 with 2 gave two isomeric azomethine ylide-cycloadducts via an endo-approach of the S- and W- shaped azomethine ylides (Scheme 1).

Scheme 1
While the dipole generated from aldehyde 3 and sarcosine ethyl ester (2) existed as a mixture of S- and W- forms, the dipole from aldehyde 1, which deemed more hindered than the former, did as an S-form. We, therein, proposed that the equilibrium between S- and W-shaped azomethine ylides was controlled not by the electronic nature of the dipoles induced by heterocyclic systems but by the steric hindrance around the dipole and dipolarophile. To check this working model, we examined the reaction of the azomethine ylide from 4-(alk-2-enyl)benzylamino-2-formylpyr-2(2H)-ones $\mathbf{4}$ and $\mathbf{2}$, which is less hindered than that from aldehyde $\mathbf{1}$ and $\mathbf{2}$
The reaction 4 -(N-allylbenzylamino) substrate $\mathbf{4 a}$ with $\mathbf{2}$, in toluene at reflux for 24 h gave two isomeric azomethine ylidecycloadducts $5 \mathbf{a}$ and $\mathbf{6 a}(58 \%$; as a $1: 1$ mixture) together with $\mathbf{8 a}(13 \%)$. The structure of $\mathbf{5 a}$ and $\mathbf{6 a}$ were easily assigned on

[^0]the basis of their elemental analyses and spectroscopic data in comparison with those of the corresponding cycloadducts in the reaction of $3 .{ }^{2,3}$ Based on their structural assignment, the formation of 5a was ascribed to the endo-approach of the S-shaped azomethine ylide, while that of 6a was ascribed to the endoapproach of the W-shaped one. On the other hand, the structure of $8 \mathbf{a}$ was deduced to be 1-benzyl-7-methyl-1,2-dihydro-2,4-ethanopyrrolo[4,3-d][1,3]oxazin-5(4H,5H)-one, which was regarded as a secondary product from 1-benzyl-5-hydroxy-8-methyl-4,5-dihydropyrrolo[4,3-b]azepin-6($1 H$)-one (7a), a carbonyl ene product of $\mathbf{4 a}$. Similar carbonyl ene reaction was also observed in the thermal reaction of aldehyde $\mathbf{1 .}{ }^{1}$

The reaction utilizing $N-(E)$-but-2-enyl substrate $\mathbf{4 b}$ and N (E)-cinnamyl one $\mathbf{4 c}$ also gave $\mathbf{5 b}, \mathbf{c}$ and $\mathbf{6 b}, \mathbf{c}$ in moderate total yields together with [1,3]oxazines 8b, c (Scheme 2 and Table 1). The configuration of the $10-\mathrm{H}$ of $[1,3]$ oxazines $\mathbf{8 b}, \mathbf{c}$ was deduced to be endo from the coupling constants between the 4 - and $10-\mathrm{H}\left(J_{4,10}=c a 0 \mathrm{~Hz}\right)$.

These findings were consistent with the proposed equilibrium between the S - and W - shaped azomethine ylides controlled by the steric hindrance. The carbonyl ene reaction of 4 was competitive with the azomethine ylide formation from 4 at an elevated reaction temperature.

Scheme 1

Table 1 Reaction of aldehydes 4 with sarcosine ethyl ester (2)

Run	Aldehyde	Reaction conditions	Products (yield \%) ${ }^{\text {a }}$
1	4a	Benzene, 80 h	5a (22) 6a (16)
2	4a	Toluene, 24 h	5a (29) 6a (29) 8a (13)
3	4b	Benzene, 80 h	5b (49) 6b (23) 8b (trace)
4	4b	Toluene, 24 h	5b (34) 6a (22) 8b (20)
5	4c	Toluene, 26 h	5c (48) 6c (trace) 8c (34)

${ }^{2}$ Based on isolated products.

Table 2 Thermal ene reaction of aldehydes 4

Run	Aldehyde	Reaction conditions	Products (yield \%) ${ }^{\text {a }}$
1	4a	Toluene, 48 h	8a (60) 9a (21)
2	4a	Xylene, 12 h	8 a (44) 9a (34)
3	4b	Xylene, 20 h	7b (13) 8b (42) 9b (14)
4	4c	Xylene, 20 h	8c (86) 9c (7)

${ }^{\text {a }}$ Based on isolated products.

Our next concern was focused on the thermal behaviours of aldehydes 4; heating $\mathbf{4 a}$ in toluene at reflux for 48 h gave [1,3]oxazine 8a and azepine 9a in 60 and 21% yield, respectively. Compound 9a was obtained as characteristic brown crystals and its formation was ascribed to dehydration of the initially formed azepine 7a. the reaction of $\mathbf{4 b}$ in toluene at reflux gave $\mathbf{7 b}, \mathbf{8 b}$ and $\mathbf{9 b}$. The structure of azepine $\mathbf{7 b}$, a primary product in ene reaction of this system, was also assigned on the basis of the elemental analysis and spectroscopic data in comparison with those of the ene products previously reported. ${ }^{1,4}$ The stereochemistry between the 4 - and 5 -position of the azepine ring of $\mathbf{7 b}$ was deduced to be cis from the coupling constant $\left(J_{4.5}=\mathrm{ca} .0 \mathrm{~Hz}\right){ }^{4}$ Acid treatment of azepine 7b gave the desired [1,3]oxazine $\mathbf{8 b}$ in a good yield. Similar ene reaction of $4 \mathbf{c}$ in xylene at reflux gave $8 \mathbf{c}$ and $9 \mathbf{c}$ in a good total yield. Thermal reaction of aldehydes 4 performed a carbonyl ene reaction to afford azepines 7 stereoselectively, which were converted into [1,3]oxazines $\mathbf{8}$ and fully conjugated azepines 9 during the reaction.

Experimental

The usual instruments general procedures and chromatographic procedures are given in ref. 3 .

Reaction of aldehyde $\mathbf{4 b}$ with sarcosine ethyl ester (2); General procedures: a solution of aldehyde $\mathbf{4 b}(0.15 \mathrm{~g}, 0.5 \mathrm{mmol})$, sarcosine ethyl ester hydrochloride ($0.1 \mathrm{~g}, 0.65 \mathrm{mmol}$), and diisopropylethylamine ($0.17 \mathrm{ml}, 0.95 \mathrm{mmol}$) in toluene (10 ml) was heated under reflux for 24 h . the resultant precipitates were filtered off and the filtrate was evaporated to dryness. The residue was subjected to column chromatography on silica gel to afford $\mathbf{6 b}$ and $\mathbf{5 b}$ as elution of hexane/ethyl acetate ($2 / 1$) and $\mathbf{8 b}$ (hexane/ethyl acetate $=1 / 1$).
$\left(2 S^{*}, 3 a R^{*}, 9 b S^{*}\right)-(\pm)-5-$ Benzyl-2-(ethoxycarbonyl)-1,3,7-trimethyl-2,3,3a,4,5,9b-hexahydropyrrolo[3,4-c]pyrano[4,3d]pyridin- $9(1 \mathrm{H})$-one $(\mathbf{5 b})$: pale yellow prisms from hexane-benzene; m.p. $184-186^{\circ} \mathrm{C}$ (Found: C, 69.55; H, 7.39; N, 6.78. $\mathrm{C}_{23} \mathrm{H}_{38} \mathrm{~N}_{2} \mathrm{O}_{4}$ requires C, 69.67; $\mathrm{H}, 7.12 ; \mathrm{N}, 7.07) ;-(\mathrm{KBr}): 1725,1680 \mathrm{~cm}^{-1}(\mathrm{CO}) ;$ $\delta_{\mathrm{H}}\left(\mathrm{CDC1}_{3}\right): 0.97(3 \mathrm{H}, \mathrm{d}, J 7.3,3-\mathrm{Me}), 1.29\left(3 \mathrm{H}, \mathrm{t}, J 7.3, \mathrm{CH}_{2} \mathrm{Me}\right)$, $2.03(1 \mathrm{H}, \mathrm{m}, 3 \mathrm{a}-\mathrm{H}), 2.13,2.56$ (each 3 H , each s, 1- and 7-Me), 2.26 $(1 \mathrm{H}, \mathrm{m}, 3-\mathrm{H}), 3.10-3.13(2 \mathrm{H}, \mathrm{m}, 4-\mathrm{H}), 3.82(1 \mathrm{H}, \mathrm{d}, J 8.3,2-\mathrm{H}), 4.21$ $\left(2 \mathrm{H}, \mathrm{q}, J 7.3, \mathrm{CH}_{2} \mathrm{Me}\right), 4.45(1 \mathrm{H}, \mathrm{d}, J 6.6,9 \mathrm{~b}-\mathrm{H}), 4.52(2 \mathrm{H}, \mathrm{br}, \mathrm{s}$, $\left.\mathrm{CH}_{2} \mathrm{Ph}\right), 5.78(1 \mathrm{H}, \mathrm{s}, 6-\mathrm{H}), 7.15-5.40(5 \mathrm{H}, \mathrm{Ph}) ; \delta_{\mathrm{C}}\left(\mathrm{CDC1}_{3}\right): 14.6$, $15.1,20.4,36.4,37.8,42.6,50.1,54.4,54.6,60.0,69.5,92.6,95.5$, $126.9,127.8,129.1,136.3,155.3,160.6,164.8,172.1$.
$\left(2 R^{*}, 3 a R^{*}, 9 b S^{*}\right)-(\pm)-5-$ Benzyl-2-(ethoxycarbonyl)-1,3,7-trimethyl-2,3,3a, 4,5,9b-hexahydropyrrolo [3,4-c]pyrano[4,3d] pyridin- $9(1 H)$-one ($\mathbf{6 b}$): pale yellow needles from hexane-benzene; m.p. $178-181^{\circ} \mathrm{C}$ (Found: C, 69.39; H, 7.04; N, 6.94. requires C,
69.67; H, 7.12; N, 7.07); \tilde{v} (KBr): 1725, $1680 \mathrm{~cm}^{-1}$ (CO); $\delta_{\mathrm{H}}: 1.21$ (3 $\mathrm{H}, \mathrm{d}, J 3.0,3-\mathrm{Me}), 1.27\left(3 \mathrm{H}, \mathrm{t}, J 7.3, \mathrm{CH}_{2} M e\right), 1.62(1 \mathrm{H}, \mathrm{m}, 3 \mathrm{a}-\mathrm{H})$, $1.84(1 \mathrm{H}, \mathrm{m}, 3-\mathrm{H}), 2.12,2.46$ (each 3 H , each s, 1- and 7-Me), 2.77 (1 H, d J 5.9, 2-H), 3.09 (1 H , dd, $J 5.6,12.2,4-\mathrm{H}), 3.51(1 \mathrm{H}, \mathrm{t}, J$ $12.2,4-\mathrm{H}), 3.71(1 \mathrm{H}, \mathrm{d}, J 4.6,9 \mathrm{~b}-\mathrm{H}), 4.19\left(2 \mathrm{H}, \mathrm{q}, J 7.3, \mathrm{CH}_{2} \mathrm{Me}\right)$, 4.32, 4.74 (each 1 H , each d, $\left.J 17.2, \mathrm{CH}_{2} \mathrm{Ph}\right), 5.74$ ($1 \mathrm{H}, \mathrm{s}, 6-\mathrm{H}$), 7.15-7.40 (5 H, Ph); $\delta_{\mathrm{C}}\left(\mathrm{CDCl}_{3}\right): 14.4,20.4,20.5,39.5,40.9,49.7$, $54.1,57.0,60.5,60.8,74.7,88.8,95.6,125.9,129.0 \times 2,136.2,154.6$, 161.0, 164.9, 173.6.

Thermal reaction of aldehyde 4b; General procedures: a solution of aldehyde $\mathbf{4 b}(0.30 \mathrm{~g}, 1.0 \mathrm{mmol})$ in xylene $(10 \mathrm{ml})$ was heated under reflux for 24 h . Chromatographic purification on silica gel gave 9b $(0.4 \mathrm{~g}, 13 \%$; hexane/ethyl acetate $=2 / 1) . \mathbf{8 b}(0.13 \mathrm{~g}, 43 \%$, hexane/ethyl acetate $=1 / 1)$, and $7 \mathbf{b}(0.4 \mathrm{~g}, 14 \%$, hexane/ethyl acetate $=1 / 2$), respectively.
(4S*,5R*)-(土)-1-Benzyl-5-hydroxy-4,8-dimethyl-4,5-dihydropy-rrolo[4,3-b]azepin- $6(1 H$)-one ($7 \mathbf{7 b}$): colourless prisms from hexanebenzene; m.p. $75-76^{\circ} \mathrm{C}$ (Found: 72.47; H, 6.48; N, 4.67. $\mathrm{C}_{18} \mathrm{H}_{19} \mathrm{NO}_{3}$ requires C, $72.70 ; \mathrm{H}, 6.44 ; \mathrm{N}, 4.71) ; \tilde{\mathrm{v}}(\mathrm{KBr}): 3375$, (OH), $1680 \mathrm{~cm}^{1}$ $(\mathrm{CO}) ; \delta_{\mathrm{H}:}\left(\mathrm{CDC1}_{3}\right): 1.24(3 \mathrm{H}, \mathrm{d}, J 7.3,4-\mathrm{Me}), 2.08(3 \mathrm{H}, \mathrm{s}, 8-\mathrm{Me})$, 2.77-2.81 ($2 \mathrm{H}, \mathrm{m}, 4-\mathrm{H}$ and $5-\mathrm{OH}$), $4.73\left(2 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{2} \mathrm{Ph}\right), 4.81(1 \mathrm{H}$, dd, $J 3.3,9.6,3-\mathrm{H}), 5.28(1 \mathrm{H}, \mathrm{s}, 5-\mathrm{H}), 5.75(1 \mathrm{H}, \mathrm{s}, 9-\mathrm{H}), 5.91(1 \mathrm{H}$, dd, J 2.3, 9.6, 2-H), 7.20-7.42 (5 H, Ph); $\delta_{\mathrm{C}}\left(\mathrm{CDC1}_{3}\right): 19.5,21.8,37.5$, $55.4,70.2,96.9,114.8,126.4,127.0,127.8,129.2,130.3,136.7$, 151.0, 162.0, 162.2; m/z (EI): $297\left(\mathrm{M}^{+}\right)$.
($\left.2 S^{*}, 4 S^{*}, 10 S^{*}\right)-(\pm)$-1Benzyl-7,10-dimethyl-1,2-dihydro-2,4ethanopyrrolo $[4,3-d][1,3]$ oxazin- $5(4 H, 5 H)$-one ($\mathbf{8 b}$): yellow prisms from hexane-benzene; m.p. 153- $157^{\circ} \mathrm{C}$ (Found: 72.68; H, 6.47; N, 4.71. $\mathrm{C}_{18} \mathrm{H}_{19} \mathrm{NO}_{3}$ requires C, 72.70; H, 6.44; N, 4.71); $\tilde{\mathrm{v}}(\mathrm{KBr}): 1680$ $\mathrm{cm}^{-1}(\mathrm{CO}) ; \delta_{\mathrm{H}:}\left(\mathrm{CDC1}_{3}\right): 1.09(3 \mathrm{H}, \mathrm{d}, J 6.9,10-\mathrm{Me}), 1.72(1 \mathrm{H}, \mathrm{m}$, $10-\mathrm{H}), 2.12(3 \mathrm{H}, \mathrm{s}, 7-\mathrm{Me}), 2.35(1 \mathrm{H}, \mathrm{dd}, J 8.3,13.3,9-\mathrm{H}), 2.65$ (1 $\mathrm{H}, \mathrm{m}, 9-\mathrm{H}), 4.40,4.60$ (each 1 H , each d, J. 12.7, CH2Ph), $4.83(1 \mathrm{H}$, s, 4-H), $5.16(1 \mathrm{H}, \mathrm{d}, J 5.9,2-\mathrm{H}), 5.66(1 \mathrm{H}, \mathrm{s}, 8-\mathrm{H}), 7.23-7.40(5 \mathrm{H}$, $\mathrm{Ph}) ; \delta_{\mathrm{C}}\left(\mathrm{CDC1}_{3}\right): 20.4,21.3,44.3,44.4,51.5,79.8,89.7,94.9,96.4$, 126.4, 127.8, 129.0, 136.3, 150.7, 161.2, 161.8; m/z (EI): $297\left(\mathrm{M}^{+}\right)$.

1-Benzyl-4,8-dimethylpyrrolo[4,3-b]azepin-6(1H)-one (9b): brown needles from EtOH ; m.p. $134-135^{\circ} \mathrm{C}$ (Found: C, 77.51; H, 6.20; N, 4.89. $\mathrm{C}_{18} \mathrm{H}_{17} \mathrm{NO}_{2}$ requires C, 77.39; $\mathrm{H}, 6.13 ; \mathrm{N}, 5.01$); $v_{\text {max }}$ $(\mathrm{KBr}): 1690 \mathrm{~cm}^{-1}(\mathrm{CO}) ; \delta_{\mathrm{H}:}\left(\mathrm{CDC1}_{3}\right): 1.76(3 \mathrm{H}, \mathrm{br}, \mathrm{s}, 4-\mathrm{Me}), 2.13{ }^{\max }(3$ $\mathrm{H}, \mathrm{s}, 8-\mathrm{Me}), 4.31\left(2 \mathrm{H}, \mathrm{s}, \mathrm{C} H_{2} \mathrm{Ph}\right), 5.02(1 \mathrm{H}, \mathrm{d}, J 7.6,3-\mathrm{H}), 5.08$ (1 H, d, J7.6, 2- H), 5.60 (1 H, br, s, 9-H), $6.18(1 \mathrm{H}, \mathrm{s}, 5-\mathrm{H}), 7.32(5 \mathrm{H}$, $\mathrm{Ph}) ; \delta_{\mathrm{C}}\left(\mathrm{CDC1}_{3}\right): 20.0,23.5,54.5,99.2,108.5,121.4,125.6,127.4$, $127.6,127.8,128.8,135.8,136.9,139.4,161.7,163.4 ; \mathrm{m} / \mathrm{z}$ (EI): 279 $\left(\mathrm{M}^{+}\right)$.

Received 16 February 2000; accepted 30 June 2000 Paper 99/180

References

1 Y. Kuroki, R. Akao,, T. Inazumi, M. Noguchi, Tetrahedron, 1977, 50, 1063.
2 M. Noguchi, R. Akao,, M. Gotoh, H. Kawamoto, A. Kakehi, J. Chem. Res. Submitted to

3 T. Inazumi, K. Yamada, Y. Kuroki, A. Kakehi, M. Noguchi, J. Chem. Soc., Perkin Trans. 1, 1994, 557; M. Gotoh, T. Mizui, B. Sun, K. Hirayama, M. Noguchi, J. Chem. Soc., Perkin Trans. 1, 1995, 1857.
4 M. Noguchi, T. Mizukoshi, A. Kakehi, Tetrahedron, 1996, 52, 13081; M. Noguchi, T. Mizukoshi, T. Uchida, Y. Kuroki, Tetrahedron, 1996, 52, 13097; M. Noguchi, T. Mizukoshi, S. Nakagawa, A. Kakehi, Tetrahedron, 1996, 52, 13111.

[^0]: * To receive any correspondence. E-mail: noguchi@po.cc. yamaguchi-u.ac.jp
 ${ }^{\dagger}$ This is a Short Paper, there is therefore no corresponding material in J Chem. Research (M).

